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Tough polymers (especially crystalline polyolefins) tend to show brittle behaviour, with a pronounced drop in
fracture toughness, at high crack speeds. Since this effect is of special industrial importance, the High Speed
Double Torsion test has been developed to measure it. Extracting fracture resistance data from the test demands
accurate dynamical stress analysis of the specimen, but bulk strains are usually large enough to induce pronounced
stress–strain non-linearity. The Torsional Impedance test was devised to acquire shear stress–strain data for
corresponding geometries and loading times. The original analysis is here shown to have been flawed and it is
corrected according to a more complete model, implemented as a numerical finite-difference scheme. Data are
presented for modified high density polyethylene, and for pure and rubber-toughened grades of both
polyoxymethylene and polypropylene.q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

The development of the Torsional Impedance test was
motivated by the need to quantify non-linear-elastic
material properties observed in the High Speed Double
Torsion (HSDT) test. The HSDT test is a high rate version
of the standard double torsion fracture test. It was developed
by Leevers1 to induce steady rapid crack propagation (RCP)
in tough polymers. The experimental results are used to
determine a material’s dynamic fracture resistance (GD) as a
function of crack velocity. The HSDT test specimen, a plate
100 mm by 200 mm and 10 mm thick, rests horizontally on
four radiused support points. As shown inFigure 1, a fast-
moving striker, carrying two similarly radiused points, hits
the specimen from above between the two support points
near one end. Continuing at almost constant speed (typically
5–35 m/s), the striker initiates a crack (usually from an
initial notch) and drives it along the specimen centreline at
controlled speed (typically 50–350 m/s) by applying equal
and opposite torsion. The reaction force and the crack length
are recorded continuously.

The specimen is analysed as two rectangular-sectioned
torsion beams, lying side by side but joined only beyond the
crack tip. As the crack approaches, each beam section starts
to rotate, accelerating until the crack has passed; after which
rotation continues at a more constant rate. Because
deformation is symmetric about the crack plane, the
‘beam rotation profile’v(z) (Figure 1) provides a complete
description of bulk specimen deformation. The torsion or
twist ]v/]z largely determines local strains, and]2v/]z2

largely determines strain rates. Broadly speaking, each
section suffers a short period of rapid loading, during which
it communicates some energy to the passing crack front,
followed by a longer period under almost constant
deformation at high strain.

In order to determineGD from the HSDT experimental
results a post-mortem analysis must be performed. The

analysis must model the deformation during the test so that
the work done by the striker can be partitioned into strain,
kinetic and fracture energies as a function of time2. Wheel
has developed the most advanced analysis of the test to date.
It is based on numerically integrating a one (spatial)
dimensional torsional wave equation using the finite
difference (FD) method. His equation was based on
Gere’s3, which included the effects of axial stresses but
not axial inertia.

The value ofGD calculated from the HSDT analysis is
strongly dependent on the secant and tangent shear moduli.
These moduli, together with the section geometry and
boundary conditions, control the amplitude and velocity of
torsional waves. Wheel’s2 initial analysis of the HSDT test
specimen used a linear-elastic material model. He used a
direct contact ultrasonic technique developed by Dioh4 to
determine both the tensile (E) and shear (m0) moduli. These
moduli correspond to a low strain (0.1%) and a high strain
rate (20 000 s¹1). His model over-predicted the experimen-
tal load by approximately 25%, the disparity varying little
with strain. The over prediction led him to the conclusion
that, even during this short loading time, the shear modulus
decreased with increasing strain.

To acquire quantitative non-linear material property data,
Wheel developed a Torsional Impedance test5. The test
consists of measuring the impedance of the rectangular
beams to an imposed rotation rate. To achieve this an un-
modified HSDT test rig is used. The sample consists of a
pre-fractured HSDT specimen which is re-assembled and
loosely held together at the end furthest from the load point.
Although visco-elastic strain rate effects are not directly
accounted for, the rates in the Torsional Impedance test are
similar to those produced in the HSDT test.

Wheel proposed a definition of effective strain which was
proportional to striker velocity. He calculated the associated
effective shear modulus from the load. He demonstrated that
the shear modulus did indeed reduce with strain, and
included the measured non-linear properties in his analysis
of the HSDT test. The non-linear analysis further reduced
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the scatter inGD results and reduced the disparity between
predicted and experimental load.

A FINITE DIFFERENCE MODEL OF THE TORSIONAL
IMPEDANCE TEST

Before examining the Torsional Impedance test further, a
model of it is introduced. This model is subsequently used to
validate assumptions made in deriving a simplified,
analytical solution for the test specimen deformation.

Wheel’s FD model of the HSDT test can easily be
adapted to model the Torsional Impedance test, which is
merely an HSDT test on a zero-GD material. However, a
new, more accurate, fourth-order, partial differential
equation governing torsion of rectangular bars was given
in Ref. 6. The equation was derived from two second-order
equations whereby an axial displacement variable was
eliminated. A new FD program was written to integrate
simultaneously the non-dimensional forms of the two
second-order equations. An explicit, second-order accurate,
central difference scheme was used. This was shown to be
both efficient and stable by Wheel2. To ensure stability, the
time step must be less than the time taken for a disturbance,
travelling at the maximum possible velocity, to traverse the
distance between two adjacent nodes. The time step chosen
was one fifth of the time it takes a shear wave (asymptotic
phase velocity of dispersive torsional waves at high
frequencies) to travel between two adjacent nodes. A nodal
spacing of 1.667 mm was found to ensure convergence.

Resonance test case
The analytical solution of the equation for torsional

resonance of rectangular section beams was given in6. This
was used as a test case for the FD model: initial nodal
rotations and axial displacements were set to correspond to a
specific resonance mode. The model was then used to
predict the resulting deformation. The model geometry
corresponded to the standard HSDT half-specimen and the
linear-elastic material properties were used. The predicted
frequency of oscillation was within 0.01% of that calculated
analytically and the mode shape showed no change over 20
oscillations. This procedure was repeated for all mode
numbers up to the 16th, with no increase in the discrepancy
between analytical and FD results.

Boundary conditions
The boundary conditions for the Torsional Impedance

test model are the same as those used to model the low rate
DT test in Ref. 7.

The load trace from a Torsional Impedance test shows
characteristic oscillations about a mean load. Work by
Williams9 and Crouch10 on the three-point-bend specimen
showed that two possible causes for the oscillation are
contact stiffness and overhang (the region between the load
point and free end) effects. The modelling of the overhang is
already included in the FD model as described in Ref. 7.

The contact stiffness between the spherical contact points
and the planar specimen surface was included in the model
via the solution of Hertz11. His solution assumes linear
elasticity and zero friction or relative slip between the
contacting surfaces:

a ¼
9
16

p2(c1 þ c2)2

R

� � 1
3
P2=3

wherea is the distance that the two bodies approach one
another after contact,P is the contact force andR is the
radius of the contact point.cn ¼ (1¹ u2

n)=(pEn) is a compli-
ance term, the subscriptn ¼ 1 or 2 denoting the different
material properties of the two bodies,E being the tensile
modulus andu the Poisson’s ratio. The value assigned toE
for the specimen is the product ofm0 and an adjustment
factor (x). The adjustment factor was introduced since the
value of E appropriate to the strain and strain rate at the
contact point is unknown prior to performing the analysis.
The value ofx is calculated by matching the oscillation
amplitude of the experimental and predicted load histories.

The load–plane rotation (vL) in the Torsional Impedance
test can approach 308. Leevers and Williams8 gave a large
displacement correction:

x ¼ D tanvL ¹ k(secvL ¹ 1),

which can be inverted to give:

vL ¼ arcsin
k��������������������������

D2 þ (k ¹ n)2
p !

¹ arctan
k ¹ n

D

� �
wheren is striker displacement,D is the distance between
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Figure 1 Schematic of the high speed double torsion test



the support and load points, andk ¼ R1 þ R2 þ B whereR1,
R2 are the radii of the support and load points andB is the
specimen thickness. The value ofn is equal to the difference
between the striker displacement and the sum ofa at the
support and load points.

The above equations governingvL, together with
boundary conditions for the specimen itself at this plane,
are solved in the FD model at each step. Deceleration of the
striker due to the reaction load is also accounted for.

THE TORSIONAL IMPEDANCE TEST ANALYSIS

In theory, the FD model described above could be used to
determine the dependence of the effective shear moduli on
effective strain. In practice this is extremely difficult since
there is a large variation in strain along the specimen. Since
only two parameters are measured during a test (load and
striker velocity) a wide range of stress–strain curves could
be used to match FD predictions to any one test. An iterative
process would therefore be required, performing the test at a
range of striker speeds, analysing each test with a first guess
stress–strain curve and then adjusting the model on
comparing the FD and experimental results. A simplified
analytical analysis is therefore required which can be used
to derive a non-linear stress–strain curve directly from the
experimental results.

Review
A typical load trace (Figure 2) shows, after an initial

peak, an oscillation about a constant mean value. The mean
load increases with striker velocity. The nature of the
oscillation is largely determined by the overhang region
behind the load plane: this can be demonstrated by
comparing the contact load predicted using the FD model
with and without the overhang. These results are also shown
in Figure 2.

Figure 3 shows an instantaneous beam rotation profile
predicted from the finite difference solution during the
constant load period. The region in front of the load plane
region is subjected to uniform torsion (constant twist). This
is expected since a constant rotation rate is applied and any
local variations in the twist would quickly disperse.

The wave speed in this region must therefore equal that
predicted from the torsional equation of motion for uniform
torsion6 (which is identical to Saint-Venant’s solution):

Ct ¼

��������
lmt

r

s
wherer is the density,l is a section constant andm t is the
effective section tangent shear modulus as defined in6.
Wheel assumed thatm t ¼ m0, the low strain, high strain
rate shear modulus. Knowing the section rotation rate
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Figure 3 Predicted beam rotation profile during Torsional Impedance test (HDPE, 08C, striker velocity¼ 22.2 m/s)

Figure 2 Experimental and predicted load traces (HDPE, 08C, striker velocity¼ 22.2 m/s)



imposed by the striker(v̇L) he calculated the twist in the
deformed region as:

]v

]z

� �
L
¼

v̇L

C0
t

(1)

whereC0
t is the Saint-Venant torsional wave speed calcu-

lated assumingm t ¼ m0. Wheel then defined an effective
strain (ge) equal toBð]v=]zÞ the maximum shear strain in
the section. From equation (1) he was therefore able to
calculate an effective strain from the striker speed.

The transmitted torque for the case of uniform torsion is
given by Ritchie and Leevers6 as:

T ¼mslJ
]v

]z
(2)

whereJ is the second moment of area of the section andms is
the effective secant shear modulus as defined in Ritchie and
Leevers6.

Wheel calculated the value ofms associated with the
effective strain by substituting the experimentally measured
mean torque and calculated twist into equation (2). By
repeating the test at different striker velocities, he built up a
definition for ms(ge) and thereby calculated the effective
tangent shear modulus in the normal manner:

mt ¼
]

]ge
(msge):

A revised analysis of the Torsional Impedance test
For a non-linear elastic material the wave speed at any

point will be a function of the local tangent shear modulus
(m t) which will depend on strain. By neglecting this
dependence in assumingm t ¼ m0 to derive equation (3),
Wheel under-predicted the strains and over-predicted the
decay rate ofms with strain. Correcting the analysis means
the twist can no longer be determined explicitly, since it
depends on the value ofm t which is to be calculated.

A more rigorous definition ofge was proposed in Ritchie
and Leevers6. Fromge an effective stress is defined as usual
from Hooke’s law as:

te ¼msge

where the effective strain,ge ¼ (lJ=Gc)=(]v=]z) and for a
rectangular sectionGc ¼ 1

4BH(Bþ H)
The effective stress is easily calculated from the

experimental mean torque (equation (2)) as:

te ¼
T
Gc

Substituting Wheel’s evaluation for twist into the new defi-
nition of effective strain, but without making any assump-
tion aboutm t, gives:

dte

dge
¼

1
m0

t0

ge

� �2

(3)

where

t0 ¼
m0lJ
Gc

v̇L

C0
t

The variablet0 is the effective stress that would result if
ms ¼ m0. The experimental results can now be used to define
te(t0) which should be independent of section dimensions.
By the chain rule,

dte

dge
¼

dte

dt0
·
dt0

dge

Substituting from equation (3) and integrating by separation
of variables, gives:

1
ge

¼ ¹ m0

∫ dte=dt0

t2
0

� �
dt0 (4)

Equation (4) thus allows the effective strain to be calculated
as a function of effective stress.

Implementation of the analysis
In order to proceed with the evaluation of the shear

moduli a mathematical form ofte(t0) must be specified. A
typical set of normalised results from the Torsional
Impedance test for an HDPE material is shown inFigure 4.

At first sight the data appear to lie on a straight line with a
slope less than 1. This would imply bothms andm t to have
strain independent values considerably less thanm0. Results
from section rotation measurements (see later) show that
this cannot be true, since at low values of strainms andm t are
close tom0. The shear moduli must therefore approachm0 at
low strains.

The approach taken here is to use a piece-wise linear fit to
the experimental datate(t0) defined as follows. Lette(t0) be
approximated by a consecutive series ofN linear regions
such that regionn is defined by the two points,n ¹ 1 andn,
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Figure 4 Torsional Impedance results for an HDPE



and is described by the following equation:

te ¼ mn(t0 ¹ t0ln¹ 1) þ teln¹ 1

where the slope,

mn ¼
teln ¹ teln¹ 1

t0ln ¹ t0ln¹ 1

and
t0ln¹ 1 # t0 # t0ln

Substituting into equation (4) and evaluating the integral
gives the effective section secant and tangent moduli for
regionn as:

ms ¼ m2
nm0 þ

teln¹ 1 ¹ mnt0ln¹ 1

ge

mt ¼m0m2
n

The strain which demarcates linear regionsn ¹ 1 andn can
take one of two values depending on which region is con-
sidered. Rather than using either of these two values the
intercept is taken (point I inFigure 5):

geln¹ 1 ¼
t0ln¹ 1

m0(mn¹ 1 þ mn)

The resulting stress–strain curve is also piece-wise linear;
this produces numerical instability problems in the FD
model due to the singularity inm t at intersections. Cubic

spline fits between the linear regions are used to prevent
this. Consider the spline connecting regionn ¹ 1 andn.
The mid strain of the spline is taken to correspond to the
strain at the intercept (I). The interval of strain (Dge) corre-
sponding to the spline is taken to be twice the difference in
strain between the intercept and strain defined by pointn¹ 1
of regionn ¹ 1:

Dge ¼ 2
t0ln¹ 1

m0

mn

mn¹ 1(mn þ mn¹ 1)

VALIDATION

Finite difference model
The original experimental results were regenerated with

the FD model, using the material stress–strain characteristic
derived above. The results (Figure 6) show a slight
reduction inte. The error is probably due to assuming the
load plane rotation rate to be constant, whereas it actually
varies slightly through the test. This assumption could be
modified, but on noting the scatter of the experimental
results the apparent reduction inte is relatively insignif-
icant.

Section rotation
A powerful advantage of the DT geometry is that large

out-of-plane deflections on the surface allow the use of an
optical crack gauge12. A modified form of this gauge can be
used to measure rotation at a series of sections along the
specimen as a function of time. Comparing the section
rotation measurements during a Torsional Impedance test to
those predicted using the FD model allows the theory to be
validated. The optical crack gauge was primarily designed
to identify times at which angular acceleration occurs at a
section, rather than to measure absolute rotation values;
quantitative results for angular rotation show considerable
scatter.

Software post-processing was used to determine the time
at which each of the section rotations passed through a
minimum (low strain) and reached 88 (high strain). A
‘propagation rate’ (V) of that rotation along the specimen
was then evaluated. The corresponding propagation rate was
then predicted using the FD model. The tests analysed
correspond to those shown inFigure 3. There is good
agreement between the FD model and experimental results
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Figure 5 Schematic of effective stress–strain regions:n ¹ 1 andn

Figure 6 Normalised Torsional Impedance test results and the equivalent values predicted from the finite difference model



(Figure 7). The propagation rate of the minimum rotation is,
on average, just less thanC0

t indicating thatms ¼ m t ¼ m0 in
this low-strain region.

Geometry dependence
Figure 8shows Torsional Impedance test results for two

thicknesses (7 and 10 mm) of the same grade of HDPE. The
figure shows the results to be similar, despite the three-fold
increase in section rigidity, and confirms that the effective
section modulus is geometry independent.

RESULTS

Non-linear material results from the Torsional Impedance
test

Torsional Impedance and ultrasonic modulus tests were
performed on a range of materials. In each case the
specimens were 10 mm thick, produced by compression
moulding. All the results could be modelled adequately by a
bilinear fit. They are summarised inTable 1.

For all the results apart from the pure polypropylene
homopolymer the high strain shear modulus is considerably
less thanm0. For the HDPE at 08C, the maximum section

strain corresponding to the effective strain demarking the
transition point between the two regions is approximately
0.8%. This corresponds approximately to a 1.6% normal
strain (assuming pure shear stress conditions) which is close
to the yield point of the material14. The transition may
therefore be due to the onset of the section yielding. As the
effective section shear strain increases beyond the transition
a larger and larger proportion of the section undergoes
yielding. This effect manifests itself as a reduction in the
effective section shear modulus which remains constant
after the initial transition period.

Oscillations in the load trace
The present work on the FD model has led to a much

deeper understanding of the characteristic oscillations seen
in the load. There are a number of aspects to these
oscillations which are discussed separately below.

The main cause of the oscillations is not the contact
stiffness but the overhang region behind the contact point, as
demonstrated inFigure 2. Torsional Impedance tests were
performed on HDPE at¹58C with two different overhang
lengths of 5 and 15 mm. The load histories for each test
were recorded and compared with those predicted by the FD
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Figure 7 Experimental and predicted propagation rates of the minimum rotation amplitude

Figure 8 Torsional Impedance results for 7 and 10 mm thicknesses of HDPE at 08C (7 mm results from Wheel13)



model. The same material definition was used to model each
sample. The results (Figure 9) show an increase in both the
frequency and amplitude of the load trace as the overhang
length is increased.

The contact stiffness does, however, have a secondary
effect (Figure 10). Decreasing the contact stiffness reduces
both the amplitude and frequency of the striker force

oscillations, whilst the mean load remains constant. This
result would be expected from a mass-spring model9.

The load history in the HSDT test is usually measured at
the support point at the loaded end of the specimen.
Torsional Impedance tests have also been performed by
Venizelos15 using an accelerometer in the striker. Both the
applied load at the striker contact point and the reaction
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Table 1 Summary of Torsional Impedance test results

Material High density
polyethylene

Polyoxymethylene
(unmodified)

Polyoxymethylene
(toughened)

Polypropylene
(unmodified)

Polypropylene
(toughened)

Temperature (8C) 0 0 0 0 0

m0 (GPa) 1.127 1.783 1.209 1.79 0.856

Poisson’s ratio (u) 0.38 0.37 0.38 0.33 0.40

Density (kg/m3) 960 1420 1330 912.3 894.9

Slope (m1) 0.544 0.545 0.394 0.951 0.844

Point 1 t0 (MPa) 1.047 0.706 0.172 0.0 0.593

te (MPa) 1.047 0.706 0.172 0.0 0.593

Point 2 t0 (MPa) 7.00 10.00 8.00 6.0 5.00

te (MPa) 4.29 5.77 3.26 5.706 4.31

(m1)
2m0 (GPa) 0.33 0.53 0.19 1.61 0.61

Figure 9 Dependence of load oscillations on overhang length

Figure 10 Dependence of predicted load on contact stiffness



force at the support point for one test are shown inFigure
11. The load trace from the accelerometer has been
considerably smoothed to suppress the ‘ringing’ of the
striker at 13 kHz.

The analysis of the Torsional Impedance test assumes that
the striker and support loads are equal: a necessary
assumption to reduce the equations of motion to one spatial
dimension. Two important facts can be concluded from
Figure 11:

• The striker initially impacts the specimen significantly
earlier than any response can be seen in the support
point load.

• The average load, after the initial peak, calculated from
the two measurements is the same.

Photographs of high speed torsion deformation taken by
Wheel13 give a further insight into the deformation. A
definite initial rotation of the load plane section about an
axis close to the centroid can be seen. This rapidly changes
to a rotation about the support point.

The above results allow the following conclusions to be
drawn about the nature of the deformation close to the load
plane. As the striker impacts the specimen, the load plane
section begins to rotate about a point close to the centroidal
axis and the specimen lifts off the support point. Torsional
loading waves emanate from the load plane, in both
directions, along the axis of the specimen. The wave
travelling towards the impacted free end of the specimen is
reflected back towards the load plane as an unloading wave.
During this time the rotating sections also gain a small nett
downward velocity component due to the continuing
downwards motion of the striker.

As the reflected unloading wave reaches the load plane,
contact between the specimen and the support point occurs
and the reaction force at this point begins to increase, whilst
the contact force between the striker and the specimen
reduces. This process is repeated, producing the character-
istic oscillations in the load trace. The support and striker
force oscillations are therefore in anti-phase and the initial
increase in support load doesnot correspond to the time of
impact but is delayed by approximately one period.

The single-spatial-dimension FD analysis is unable to
fully model this deformation, but does account for the

contact stiffness and overhang effects. In terms of
energy transmission via the torsional wave-guide, the FD
analysis should be accurate. The predicted load trace
resembles the striker contact force as opposed to the support
point load.

CONCLUSIONS

Once effective section shear stress, strain and moduli are
defined the Torsional Impedance test provides an ideal
method for measuring the effective stress–strain char-
acteristic at the strain rates appropriate to the analysis of
the HSDT test. The ultrasonically measured shear
modulus is relevant at low shear strains, but at high strains
it can over-estimate the shear modulus by a factor of two to
three.

Deformation in the Torsional Impedance test is largely
controlled by the Saint-Venant wave equation. The
dispersive nature of torsional waves in rectangular beams
is a secondary effect, which is most apparent in its
production of a negative section rotation at the leading
edge of the dominant torsional wave.

A finite difference model has been formulated which
accurately models the Torsional Impedance test. With some
minor adaptations this model can be used to model the
HSDT test, as will be presented elsewhere.
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Figure 11 Striker and support loads during the same Torsional Impedance test
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